Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Claudin-15 (CLDN15) molecules form channels that directly regulate cation and water transport. In the gastrointestinal tract, this transport indirectly impacts nutrient absorption. However, the mechanisms governing ion transport through these channels remain poorly understood. We addressed this question by building on our previous cell culture studies and all atom molecular dynamic simulation model of CLDN15. By mutating D55 to a bulkier glutamic acid (E) or neutral amino acid asparagine (N), our in vitro measurements showed that the D55E mutation decreased charge selectivity and favored small ion permeability, while the D55N mutation led to reduced charge selectivity without markedly altering size selectivity. By establishing a simplified (reduced) CLDN15 molecular dynamics model that excludes non-essential transmembrane regions, we were able to probe how D55 modified cation dehydration, charge interaction, and permeability. These results provide novel insight into organization of the CLDN15 selectivity filter and suggests that D55 plays a dual role in shaping both electrostatic and steric properties of the pore, but its electrostatic role is more prominent in determining CLDN15 cation permeability. This knowledge can be used toward the development of effective strategies to modulate CLDN15 function. The experimental approach established can be further extended to study the function of other claudin channels. Together, these advancements will help us to modulate tight junctions to promote human health.more » « lessFree, publicly-accessible full text available December 18, 2026
-
In the network of reactions present in the Big Bang nucleosynthesis, the 3 He(n, p) 3 H has an important role which impacts the final 7 Li abundance. The Trojan Horse Method (THM) has been applied to the 3 He(d, pt)H reaction in order to extract the astrophysical S(E)-factor of the 3 He(n, p ) 3 H in the Gamow energy range. The experiment will be described in the present work together with the first preliminary results.more » « less
An official website of the United States government
